Injectivité de la transformée de FOURIER

ÉNONCÉ:

Théorème : L'application, appelée transformation de FOURIER, définie par :

$$\mathcal{F}: L^1(\mathbb{R}^d) \longrightarrow \mathcal{C}_0(\mathbb{R}^d, \mathbb{R})$$
 $f \longmapsto \mathcal{F}(f)$

est une application linéaire injective.

DÉVELOPPEMENT:

LEMME (Invariance du noyau de Gauss) : Pour $t \in \mathbb{R}_+^*$, on définit l'application, appelée noyau de Gauss, définie par :

$$q_t(x) := \frac{1}{\sqrt{2\pi t^d}} e^{\frac{-|x|^2}{2t}} \in L^1(\mathbb{R}^d)$$

où |.| désigne la norme euclidienne sur \mathbb{R}^d . Alors on a :

$$\mathcal{F}(q_t)(\xi) = e^{\frac{-t|\xi|^2}{2}}$$

Démonstration. On montre le résultat pour d=1 par soucis de notations.

On a:

$$\mathcal{F}(q)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(\frac{x^2}{2} + ix\xi)} dx$$

Or
$$\left(\frac{x^2}{2} + ix\xi\right) = \frac{1}{2}(x^2 + i2x\xi) = \frac{1}{2}((x + i\xi)^2) + \xi^2$$
.

D'où:

$$\mathcal{F}(q)(\xi) = e^{-\frac{\xi^2}{2}} \int_{\mathbb{R}} e^{-\frac{1}{2}(x+i\xi)^2} dx \quad (\star)$$

On considère l'application

$$\phi: \ \mathbb{C} \longrightarrow \mathbb{C}$$
$$z \longmapsto e^{-\frac{1}{2}z^2}$$

Pour R > 0 et $\xi \in \mathbb{R}$ fixés, notons $\Gamma(R)$ le rectangle de sommets $-R, R, R+i\xi, -R+i\xi$, parcouru dans le sens direct. On a alors :

$$\int_{\Gamma(R)} \phi(z) dz = \underbrace{\int_{-R}^{R} e^{-\frac{x^{2}}{2}} dx}_{I_{1}(R)} + \underbrace{\int_{0}^{\xi} e^{-\frac{1}{2}(R+it)^{2}} i dt}_{I_{2}(R)}$$

$$\underbrace{-\int_{-R}^{R} e^{-\frac{1}{2}(x+i\xi)^{2}} dx}_{I_{3}(R)} - \underbrace{\int_{0}^{\xi} e^{-\frac{1}{2}(-R+it)^{2}} i dt}_{I_{4}(R)}$$

Or $\lim_{R\to+\infty} I_1(R) = \sqrt{2\pi}$. De plus,

$$|I_2(R)| \le \int_0^{\xi} e^{-\frac{1}{2}(R^2 - t^2)} dt = e^{-\frac{R^2}{2}} \int_0^{\xi} e^{\frac{t^2}{2}} dt$$

d'où $\lim_{R\to+\infty} I_2(R) = 0$. De façon analogue, $\lim_{R\to+\infty} I_4(R) = 0$. L'intégrale généralisée $\int_{-\infty}^{+\infty} e^{-\frac{1}{2}(x+i\xi)^2} dx$ étant convergente, on a :

$$\lim_{R \to +\infty} I_3(R) = \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(x+ix\xi)^2} dx$$

 ϕ étant holomorphe sur \mathbb{C} et $\Gamma(R)$ étant fermé, en vertu du théorème de CAUCHY, on a :

$$\int_{\Gamma(R)} e^{-\frac{z^2}{2}} dz = 0$$

Ainsi, on a:

$$\int_{-\infty}^{+\infty} e^{-\frac{1}{2}(x+ix\xi)^2} dx = \sqrt{2\pi}$$

Finalement, on obtient par la relation (\star) :

$$\mathcal{F}(q)(\xi) = e^{\frac{-\xi^2}{2}}$$

Or $\mathcal{F}(q_t)(\xi) = \mathcal{F}(q)(\sqrt{t}\xi)$ par changement de variables, d'où $\mathcal{F}(q_t)(\xi) = e^{\frac{-t\xi^2}{2}}$.

Démonstration. (théorème) : Soit $f \in L^1(\mathbb{R}^d)$.

• L'application est bien définie. En effet, $||\mathcal{F}(f)||_{\infty} \leq ||f||_{L^1}$. Par le théorème de continuité de LEBESGUE d'une intégrale à paramètres, $\mathcal{F}(f)$ est continue.

Voyons que $\lim_{|\xi|\to+\infty} \mathcal{F}(f)(\xi) = 0$. Soit $\xi = (\xi_1, \xi_2, \dots, \xi_d) \in \mathbb{R}^d$. Supposons, sans perte de généralité, que $|\xi_1|\to+\infty$. On pose $a=(\frac{\pi}{\xi_1},0,\dots,0)\in\mathbb{R}^d$. On a, par changement de variables,

$$\mathcal{F}(f)(\xi) = \int_{\mathbb{R}^d} f(x - a)e^{-i\langle x - a, \xi \rangle} dx$$
$$= -\int_{\mathbb{R}^d} \tau_a f(x)e^{-i\langle x, \xi \rangle} dx$$

D'où

$$\mathcal{F}(f)(\xi) = \frac{1}{2} \int_{\mathbb{R}^d} (f(x) - \tau_a f(x)) e^{-i\langle x, \xi \rangle} dx$$

Finalement, on a:

$$|\mathcal{F}(f)(\xi)| = \frac{1}{2}||f - \tau_a||_{L^1}$$

qui tend vers 0 lorsque $a \to 0$, par continuité de l'application $\tau : a \mapsto \tau_a$ dans $L^1(\mathbb{R}^d)$ donc lorsque $|\xi| \to +\infty$. On a donc bien que $\mathcal{F}(f) \in \mathcal{C}_0(\mathbb{R}^d, \mathbb{R})$.

• La linéarité de l'application est évidente par linéarité de l'intégrale sur \mathbb{R}^d .

• L'application est injective. En effet, soit $f \in L^1(\mathbb{R}^d)$ telle que $\mathcal{F}(f) = 0$. L'application étant linéaire, il suffit de voir que f = 0. On définit, pour $t \in \mathbb{R}_+^*$, pour $a \in \mathbb{R}^d$ fixé, $g_t(x) = q_t(x)e^{i\langle a,x\rangle}$. On a d'une part :

$$\int_{\mathbb{R}^d} f(x) \mathcal{F}(g_t)(x) dx = \int_{\mathbb{R}^d} f(x) \mathcal{F}(q_t)(x - a) dx$$
$$= f * \mathcal{F}(q_t)(a)$$
$$= \sqrt{2\pi t}^d f * q_{t-1}(a)$$

D'autre part, par la formule de dualité,

$$\int_{\mathbb{R}^d} f(x)\mathcal{F}(g_t)(x)dx = \int_{\mathbb{R}^d} \mathcal{F}(f)(x)g_t(x)dx = 0$$

D'où, pour tout $(t, a) \in (\mathbb{R}_+^*, \mathbb{R}^d)$, $f * q_{t^{-1}}(a) = 0$. Mais comme $(q_{t^{-1}})_{t>0}$ est une approximation de l'unité dans $L^1(\mathbb{R}^d)$, on a, par continuité de la norme :

$$0 = \lim_{t \to +\infty} ||f * q_{t-1} - f||_1 = \lim_{t \to +\infty} ||f||_1 = ||f||_1$$

D'où f = 0.

Remarques:

- On pourra ne montrer que le lemme + l'injectivité en admettant le reste (qu'il faut savoir montrer).
- Il faut connaître des applications immédiates de ce théorème (solutions d'une équation de convolution, etc.)
- L'application n'est pas surjective mais $\mathcal{F}(L^1(\mathbb{R}^d))$ est dense dans $\mathcal{C}_0(\mathbb{R}^d)$ (difficile).